Vibration Analysis of Thick Functionally Graded Beam under Axial Load Based on Two-Dimensional Elasticity Theory and Generalized Differential Quadrature
Authors
Abstract:
In this paper, vibration analysis of thick functionally graded beam with simply supported boundary condition under constant axial load is studied. The beam has a uniform cross-sectional area and the mechanical properties of the fungtionally graded beam are assumed to be vary through the thickness of the beam. Fundamental relations, the equilibrium and stability equations based on the displacement components are derived using the two-dimensional elasticity theory and hamilton's principle. Generalized differential quadrature (GDQ) method is used to solve the system of coupled differential equations at equilibrium and moving condition. In this paper, the influences of axial loads, dimensionless geometric parameter, functionally graded index and ratio of thickness to length on the vibration of beam is presented. To study the accuracy of the present analysis, a compression is carried out between the present results and published results and also results obtained from ABAQUSE program. Results showed that the generalized differential quadrature method is quite good. Based on the results obtained by increasing the volume fraction of fibers in the functional graded beam, the natural frequency of the beam increases and for high volume fraction, it is not possible to see much change in the natural frequency. Also, by increasing the ratio of thickness to length in the absence of the critical load the natural frequency decreased.
similar resources
Thermo-elastic analysis of a functionally graded thick sphere by differential quadrature method
Thermo-elastic analysis of a functionally graded hollow sphere is carried out and numerical solutions of displacement, stress and thermal fields are obtained using the Polynomial differential quadrature (PDQ) method. Material properties are assumed to be graded in the radial direction according to a power law function, ho...
full textFree Vibration Analysis of Nanoplates Made of Functionally Graded Materials Based On Nonlocal Elasticity Theory Using Finite Element Method
In this paper, an analysis of free vibration in functionally graded nanoplate is presented. Third-order shear deformation plate theory is used to reach more accuracy in results. Small-scale effects are investigated using Eringen`s nonlocal theory. The governing equations of motion are obtained by Hamilton`s principle. It is assumed that the properties of nanoplates vary through their thicknesse...
full textFree vibration analysis of functionally graded rectangular plates via differential quadrature method
In this study, free vibration of functionally graded rectangular plates for various types of boundary conditions has been presented . The properties of the plate are assumed as power- law form along the thickness direction , while poisson's ratio is kept constant. the linear vibration equations of functionally graded rectangular plates are derived based on first order shear deformation theory b...
full textStatic Analysis of Functionally Graded Annular Plate Resting on Elastic Foundation Subject to an Axisymmetric Transverse Load Based on the Three Dimensional Theory of Elasticity
In this paper, static analysis of functionally graded annular plate resting on elastic foundation with various boundary conditions is carried out by using a semi-analytical approach (SSM-DQM). The differential governing equations are presented based on the three dimensional theory of elasticity. The plate is assumed isotropic at any point, while material properties to vary exponentially thro...
full textVibration and Buckling Analysis of Functionally Graded Flexoelectric Smart Beam
In this paper, the buckling and vibration behaviour of functionally graded flexoelectric nanobeam is examined. The vibration and buckling formulations of functionally graded nanobeam are developed by using a new theory that’s presented exclusively for flexoelecteric nano-materials. So by considering Von-Karman strain and forming enthalpy equation based on displacement, polarization and electric...
full textGeneralized Differential Quadrature Method for Vibration Analysis of Cantilever Trapezoidal FG Thick Plate
This paper presents a numerical solution for vibration analysis of a cantilever trapezoidal thick plate. The material of the plate is considered to be graded through the thickness from a metal surface to a ceramic one according to a power law function. Kinetic and strain energies are derived based on the Reissner-Mindlin theory for thick plates and using Hamilton's principle, the governing equa...
full textMy Resources
Journal title
volume 6 issue 2
pages 59- 71
publication date 2013-12-22
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023